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We consider a periodic system describing competition among n species and
propose conditions under which there exists a unique positive periodic solution
which attracts all the solutions of positive initial values.-

Introduction

We consider the following system wich descriebes competition among n species in a
periodic environment

(1) wi(d) = w;(#) 'bg(t) - iaiu,-(i)uj(t)} i 1521% 3

i=1

where a;; and b; are continuous positive w-periodic functions of time ¢, n > 2. It is
of basic interest to find conditions, under which system (1) has positive w-periodic
solution. which is also unique and stable.

In the pioneer work [1] Gopalsamy proposed the following existence condition

T
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It was shown by Tineo and Alvarez in [2] that, besides the existence of a positive w-
periodic solution, (2) provides also global stability of (1) with respect to all its positive
solutions. The global stability property means that any two positive solutions attract
each other as t — oc. Obviously. the global stability implies uniqueness. In [2]. the
following existence condition

(3) bi(t) > Y a()U;(1), Y 1<i<n.



1s proposed. where [/;, 1 <1 < n, is the unique positive w- periodic solution of the
logistic equation

' =x [bi(1) — au(t)z].

In order to prove the global stability, Tineo and Alvarez [2] required another condition

(4) arai(t) > Y ajai(t). Vi, 1<i<n,
Fo0g5

where a,. 1 < i < n, are some positive constants.

It was proved in [2] that (2) implies (3) and (4), and in this way Tineo and
Alvarez improved the result of Gopalsamy [1]. Zhao [3] and Zanolin [4] established
the following existence condition

(5) /b t)dt > Z ] a(E)Ut)dt, 1<4<n,

J=1,5#1

which also provides permanence of (1). The permanence property (see [4]) means the
existence of a positive compact set which absorbs every positive solution of (1) as
1 — 2. (5) 1s also suggested by Tineo in [5], who in addition used (4) to obtain
global stability without a permanence requirement.

In the present paper we use (5) as a condition that provides existence and perma-
nence of system (1). To obtain the stability we will make use of the iterative scheme
that comes from the works of Tineo [5] and [8] in which is shown that S‘\ stem (1)
generates a sequence of positive w-periodic functions /% = (I7F. U7 Fo oo UF) defined
as follows: 17" = 0 and Uf*!, 1 <7 < n, is the unique positive w-periodic solu{]on of
the logistic equation

(1) = a(t) | bit) — | > -%(t)[?f(t) ~ Hgel L L]

for which we have [/2% < U+2 < U241 < (/201 [ > 1 Qur stability condition
requires existence of some positive constants a;. 1 < ¢ < n. and an integer k such
that

(6) O?'Gi'i( ( “ Z Qjan [;2k l(i) > 0 Vf, l S l S 1.
J=10#0

Notice that the sum in (6) is rowwise in contrast with (4) in which the sum is colum-
nwise.
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An example follows in which the conditions (5) and (6) hold while (4) fails.
Consider the equations

u’l = uy(t) [(3 +sint) — (3 4+ sint)uy (1) — (2 4 sint)us(1)]
ufy(t) = ua(t) [(3 4+ cost) — (2 + cost)uy(t) — (3 + cost)uy(t)] .
Here ['; = U; = 1 and obviously (5) is valid. On the other hand. the numerical

calculations show that

ai(3+sint)U]°(t) — az(2+sin)U2(1) > 1.
as(3 4 cost)U1%(t) — ay (24 cos )UP(t) > 1. Vi,

where a; = 20 and a; = 22 (here & = 5). Therefore (6) is also valid. Nevertheless
(4) fails since it implies the existence of positive costants a; and a, for which

2+ cost ) 3+ cost

- < =< —, V1.
3+ sint Ca 24 sint
The last is a contradiction hecause
[Z-I-COST . {3-1*(?0%1]
max |————— | > mn | ————
t 3+ sint { 24 sint

The reader can find also many other details and basic properties on the periodic
n-competing species problem in the papers of Tineo [8], Cushing [9], Battauz and
Zanolin [10], Ahmad and Lazer [12, 13] and Redheffer [14, 15]. This namelist does
not pretend to be explicit.

The main result

When we say that a real n-vector is positive we mean that the all its components
have the same property. ty denotes a fixed initial time.

It is not difficult to see that any solution of (1) with positive initial value u(tp)
is defined and remains positive on the whole half-axes [t. oc).

Our main result is

Theorem 1. Suppose that condition (5) holds and also thai there exist positive
constants a;, 1 < 2 < n, and an integer k such that (6) is fulfilled. Then (1) has
eractly one positive w-periodic solution and any two positive solutions u' and u*
attract each other as t — oo, i.¢.

(7) lim (u'(t) — u?*(t)) = 0.

f—oo



As we note. the existence part of Theorem 1 is proved in [3. 4. 5]. The existence is
based on the fact that condition (3) provides permanence of (1). Let us resume these
notes in the following theorem in view of their importance.

Theorem 2.([3], [4]) Suppose that (5) holds. The system (1) is permanent. More
precisely, for every positive compact set K C R™ there exist constants ¢ > 0 and €' > 0
and t' > ty such that e < w;(t) < C. t > ¢, 1 <1i <n, whenever ulty) € K.

Now it remains to show that under condition (6) there exists exactly one positive
w-periodic solution of (1) which attracts all the positive solutions. The main role for
this purpose will be played by the results of Tineo (see [5] and [8]) concerning the
iterative scheme approach to system (1). The following theorem is extracted from (5]
and [8] in a form suitable for us.

Theorem 3. Suppose that (5) holds and let k be a fived integer. Then. for cvery
solution of (1) with an initial value u(ty) > 0 there evists t' such that

[ <wlill < [’fi"‘l(f). t =4 1€ < n

The next theorem comes from Bylov [16] and is also extracted in a form sujtable
for us. It reflects the rowwise approach to the stability of the nonautonomous linear
svstems. Below we use the vector norm ||z = max; |2;].

Theorem 4. Suppose we are given a differential n-system ' = B(t)z whith «a
continuous n X n-matriv B. Suppose also that there exists a constant m with
n
bi(t)+ Do [by(t)l| Sm.  t>4, 1<i<n,
J=1,g7#1

Then the solutions of our system satisfy the estimate

()] < |lz(to)]|e™ "), ¢ > ¢,

Proof of Theorem 1. Define the strip
Se(t) = {U(t) S w(t) SUP'(1), 1<i<n).

By Theorem 3 we see that any positive solution of (1) goes mside S;. On the other
hand. using induction by k, one can see that S is invariant with respect to the
solutions of (1). i.e. if u(ty) € Si(to) then u(t) € Si(t) for all ¥+ > t4. Now the



problem for the stability of the positive solutions of (1) reduces to the problem for
the stability of the solutions whose initial values u(#y) vary in Si(#o). This remarks
allow us to suppose, without loss of generality, that u(tg) € Si(tp).

From now on the proof is a modification of the reasoning of Tineo and Alvarez
2]. Denote by u(t; p) the solution of (1) with an initial value u(ty: p) = p and suppose
that p € Si(to). In acordance with the well-known theory, we are able to verifv that
the matrix of the partial derivatives u,(t) is fundamental to the linear system

. witip)
T
v “i(t;p)

n
yi — ui(t;p) Y ai(t)y;, 1<i<n.
=1

After a change of the variables z;(t) = y;(t)/[aiu;(t; p)], the last becomes

- 1
2= E bij(t)z; where bj;(t) = ——aja;(t)u;(t; p).
: o ; :
=1

—_
o)
N’

It follows from (6) that
ajai (U (L) - Z Qj(l.?‘j(-[)['r?k_](f) > My i1l 1l S25m,
.7:1“7#!

for some positive constant m. At this point one can see that

T

bi(t)+ > |b()| < —mfa. 12>ty 1<i<n,
J=1#e

where a = max; a;. Now Theorem 4 implies that the solutions of (8) satisfy the
estimate
2]l < Jl=(to)lle™ =), ¢ > .

where & = m/a. Therefore, the fundamental matrix w,(1; p) satisfies the estimate
(9) lup(t; p)|| € Ce™™"0) ¢ > ¢,

where (" is constant independent of p € Si({y). Suppose that p.q € Si(tg). Then the
representation

1
wlhn) = ulfyg) = / up(t; (1 —s)g+ sp)(p — q)ds
0
along with (9) implies the inequality
lu(t;p) —ult; g)|| < Ce ™ =0Np—¢l|. 1>t

which completes the proof of (7).
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